Selective catalytic reduction of nitrogen oxides over a modified silicoaluminophosphate commercial zeolite.

نویسندگان

  • Carolina Petitto
  • Gérard Delahay
چکیده

Nitrogen oxides (NOx: NO, NO2) are a concern due to their adverse health effects. Diesel engine transport sector is the major emitter of NOx. The regulations have been strengthened and to comply with them, one of the two methods commonly used is the selective catalytic reduction of NOx by NH3 (NH3-SCR), NH3 being supplied by the in-situ hydrolysis of urea. Efficiency and durability of the catalyst for this process are highly required. Durability is evaluated by hydrothermal treatment of the catalysts at temperature above 800°C. In this study, very active catalysts for the NH3-SCR of NOx were prepared by using a silicoaluminophosphate commercial zeolite as copper host structure. Characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM) and temperature programmed desorption of ammonia (NH3-TPD) showed that this commercial zeolite was hydrothermally stable up to 850°C and, was able to retain some structural properties up to 950°C. After hydrothermal treatment at 850°C, the NOx reduction efficiency into NH3-SCR depends on the copper content. The catalyst with a copper content of 1.25wt.% was the most active. The difference in activity was much more important when using NO than the fast NO/NO2 reaction mixture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization and Modeling of CuOx/OMWNT’s for Catalytic Reduction of Nitrogen Oxides by Response Surface Methodology

A series of copper oxide (CuOx) catalysts supported by oxidized multi-walled carbon nanotubes (OMWNT’s) were prepared by the wet impregnation method for the low temperature (200 °C) selective catalytic reduction of nitrogen oxides (NOx) using NH3 as a reductant agent in the presence of excess oxygen. These catalysts were characterized by FTIR, XRD, SEM-EDS, and H2-TPR meth...

متن کامل

NOx Selective Catalytic Reduction over Pt Supported Catalyst Promoted by Zeolite and CeO2-ZrO2

The emission control of NOx in exhaust gases is one of the greatest engineering challenges to extend the practical and commercial application of diesel and lean burn engines. One solution is selective NOx reduction using hydrocarbons in an oxidizing atmosphere. We mainly focused on catalytic reactions under temperature excursion because of the resemblance to conditions prevailing in real automo...

متن کامل

Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis

Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to in...

متن کامل

In Situ Spectroscopic Studies of Proton Transport in Zeolite Catalysts for NH3-SCR

Proton transport is an elementary process in the selective catalytic reduction of nitrogen oxides by ammonia (DeNOx by NH3-SCR) using metal-exchanged zeolites as catalysts. This review summarizes recent advancements in the study of proton transport in zeolite catalysts using in situ electrical impedance spectroscopy (IS) under NH3-SCR reaction conditions. Different factors, such as the metal ca...

متن کامل

A Laboratory Test Setup for in Situ Measurements of the Dielectric Properties of Catalyst Powder Samples under Reaction Conditions by Microwave Cavity Perturbation: Set up and Initial Tests

The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR) of nitrogen oxides (NOX) depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of environmental sciences

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2018